Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38485205

RESUMO

AIMS: Urban green spaces are locations of maximal human activity, forming areas of enhanced risk for tick-borne disease (TBD) transmission. Being also limited in spatial scale, green spaces form prime targets for control schemes aiming to reduce TBD risk. However, for effective control, the key species maintaining local tick and tick-borne pathogen (TBP) populations must be identified. To determine how patterns of host utilization vary spatially, we utilized blood meal analysis to study the contributions of voles, shrews, squirrels, leporids and cervids towards blood meals and the acquisition of TBPs of juvenile Ixodes ricinus in urban and sylvatic areas in Finland. METHODS AND RESULTS: A total of 1084 nymphs were collected from the capital city of Finland, Helsinki and from a sylvatic island in southwestern Finland, and subjected to qPCR analysis to identify DNA remnants of the previous host. We found significant differences in host contributions between urban and sylvatic environments. Specifically, squirrels and leporids were more common hosts in urban habitats, whereas cervids and voles were more common in sylvatic habitats. In addition to providing 18.4% of larval blood meals in urban habitats, red squirrels were identified as the source of 28.6% (n = 48) of Borrelia afzelii detections and 58.1% (n = 18) of Borrelia burgdorferi sensu stricto detections, indicating an important role for local enzootic cycles. CONCLUSIONS: Our study highlights that the key hosts maintaining tick and TBP populations may be different in urban and sylvatic habitats. Likewise, hosts generally perceived as important for upkeep may have limited importance in urban environments. Consequently, targeting control schemes based on off-site data of host importance may lead to suboptimal results.

2.
Sci Rep ; 13(1): 21274, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042950

RESUMO

There is mounting evidence of increases in tick (Acari: Ixodidae) contacts in Finland during the past few decades, highlighted by increases in the incidence of Lyme borreliosis and tick-borne encephalitis (TBE). While nationwide field studies to map distributions of ticks are not feasible, crowdsourcing provides a comprehensive method with which to assess large-scale changes in tick contact areas. Here, we assess changes in tick contact areas in Finland between 1958 and 2021 using three different nationwide crowdsourced data sets. The data revealed vast increases in tick contact areas, with ticks estimated to be contacted locally approximately 400 km further north in western and approximately 100 km further north in eastern Finland in 2021 than 1958. Tick contact rates appeared to be highest along the coastline and on the shores of large lakes, possibly indicating higher tick abundance therein. In general, tick observations per inhabitant increased from 2015 to 2021. Tick contact areas have expanded in Finland over the past 60 years. It appears that taiga ticks (Ixodes persulcatus) are behind most of the northwards shifts in tick contact areas, with Ixodes ricinus contributing mostly to new contact areas in the south. While ticks are now present in most of Finland, there are still areas where tick abundance is low and/or establishment not possible, mainly in northern Finland.


Assuntos
Crowdsourcing , Encefalite Transmitida por Carrapatos , Ixodes , Doença de Lyme , Animais , Humanos , Finlândia/epidemiologia , Doença de Lyme/epidemiologia , Encefalite Transmitida por Carrapatos/epidemiologia
3.
Ecol Evol ; 13(10): e10580, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818248

RESUMO

The Eltonian niche of a species is defined as its set of interactions with other taxa. How this set varies with biotic, abiotic and human influences is a core question of modern ecology. In seasonal environments, the realized Eltonian niche is likely to vary due to periodic changes in the occurrence and abundance of interaction partners and changes in species behavior and preferences. Also, human management decisions may leave strong imprints on species interactions. To compare the impact of seasonality to that of management effects, honeybees provide an excellent model system. Based on DNA traces of interaction partners archived in honey, we can infer honeybee interactions with floral resources and microbes in the surrounding habitats, their hives, and themselves. Here, we resolved seasonal and management-based impacts on honeybee interactions by sampling beehives repeatedly during the honey-storing period of honeybees in Finland. We then use a genome-skimming approach to identify the taxonomic contents of the DNA in the samples. To compare the effects of the season to the effects of location, management, and the colony itself in shaping honeybee interactions, we used joint species distribution modeling. We found that honeybee interactions with other taxa varied greatly among taxonomic and functional groups. Against a backdrop of wide variation in the interactions documented in the DNA content of honey from bees from different hives, regions, and beekeepers, the imprint of the season remained relatively small. Overall, a honey-based approach offers unique insights into seasonal variation in the identity and abundance of interaction partners among honeybees. During the summer, the availability and use of different interaction partners changed substantially, but hive- and taxon-specific patterns were largely idiosyncratic as modified by hive management. Thus, the beekeeper and colony identity are as important determinants of the honeybee's realized Eltonian niche as is seasonality.

4.
Sci Rep ; 13(1): 14753, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679501

RESUMO

Honeybees are the most widespread managed pollinators of our food crops, and a crucial part of their well-being is a suitable diet. Yet, we do not know how they choose flowers to collect nectar or pollen from. Here we studied forty-three honeybee colonies in six apiaries over a summer, identifying the floral origins of honey and hive-stored pollen samples by DNA-metabarcoding. We recorded the available flowering plants and analyzed the specialized metabolites in honey. Overall, we find that honeybees use mostly the same plants for both nectar and pollen, yet per colony less than half of the plant genera are used for both nectar and pollen at a time. Across samples, on average fewer plant genera were used for pollen, but the composition was more variable among samples, suggesting higher selectivity for pollen sources. Of the available flowering plants, honeybees used only a fraction for either nectar or pollen foraging. The time of summer guided the plant choices the most, and the location impacted both the plants selected and the specialized metabolite composition in honey. Thus, honeybees are selective for both nectar and pollen, implicating a need of a wide variety of floral resources to choose an optimal diet from.


Assuntos
Mel , Magnoliopsida , Abelhas , Animais , Néctar de Plantas , Código de Barras de DNA Taxonômico , Pólen , DNA
5.
Ecol Evol ; 13(3): e9857, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950367

RESUMO

Small rodents are prevalent and functionally important across the world's biomes, making their monitoring salient for ecosystem management, conservation, forestry, and agriculture. There is a growing need for cost-effective and noninvasive methods for large-scale, intensive sampling. Fecal pellet counts readily provide relative abundance indices, and given suitable analytical methods, feces could also allow for the determination of multiple ecological and physiological variables, including community composition. In this context, we developed calibration models for rodent taxonomic determination using fecal near-infrared reflectance spectroscopy (fNIRS). Our results demonstrate fNIRS as an accurate and robust method for predicting genus and species identity of five coexisting subarctic microtine rodent species. We show that sample exposure to weathering increases the method's accuracy, indicating its suitability for samples collected from the field. Diet was not a major determinant of species prediction accuracy in our samples, as diet exhibited large variation and overlap between species. fNIRS could also be applied across regions, as calibration models including samples from two regions provided a good prediction accuracy for both regions. We show fNIRS as a fast and cost-efficient high-throughput method for rodent taxonomic determination, with the potential for cross-regional calibrations and the use on field-collected samples. Importantly, appeal lies in the versatility of fNIRS. In addition to rodent population censuses, fNIRS can provide information on demography, fecal nutrients, stress hormones, and even disease. Given the development of such calibration models, fNIRS analytics could complement novel genetic methods and greatly support ecosystem- and interaction-based approaches to monitoring.

6.
Anim Microbiome ; 5(1): 19, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949549

RESUMO

BACKGROUND: The gut microbiome forms at an early stage, yet data on the environmental factors influencing the development of wild avian microbiomes is limited. As the gut microbiome is a vital part of organismal health, it is important to understand how it may connect to host performance. The early studies with wild gut microbiome have shown that the rearing environment may be of importance in gut microbiome formation, yet the results vary across taxa, and the effects of specific environmental factors have not been characterized. Here, wild great tit (Parus major) broods were manipulated to either reduce or enlarge the original brood soon after hatching. We investigated if brood size was associated with nestling bacterial gut microbiome, and whether gut microbiome diversity predicted survival. Fecal samples were collected at mid-nestling stage and sequenced with the 16S rRNA gene amplicon sequencing, and nestling growth and survival were measured. RESULTS: Gut microbiome diversity showed high variation between individuals, but this variation was not significantly explained by brood size or body mass. Additionally, we did not find a significant effect of brood size on body mass or gut microbiome composition. We also demonstrated that early handling had no impact on nestling performance or gut microbiome. Furthermore, we found no significant association between gut microbiome diversity and short-term (survival to fledging) or mid-term (apparent juvenile) survival. CONCLUSIONS: We found no clear association between early-life environment, offspring condition and gut microbiome. This suggests that brood size is not a significantly contributing factor to great tit nestling condition, and that other environmental and genetic factors may be more strongly linked to offspring condition and gut microbiome. Future studies should expand into other early-life environmental factors e.g., diet composition and quality, and parental influences.

7.
Ticks Tick Borne Dis ; 14(3): 102134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36746092

RESUMO

Molecular identification of the previous blood meal source of a questing tick (Acari: Ixodidae) from blood meal fragments was proposed a few decades ago. Following this, several blood meal assays have been developed and published, but none of them have been taken into widespread use. Recently, novel retrotransposon-based qPCR assays designed for detecting blood meal fragments of North American host species were published. We wanted to assess their function with host species present in Finland. Questing ticks were collected by cloth dragging in August-September 2021 from an island in southwestern Finland. DNA was extracted from Ixodes ricinus nymphs (n=438) and qPCR assays applied to identify larval blood meal sources (voles, shrews and red squirrels) and screen for several tick-borne human pathogens and other microbes with pathogenic potential [Borrelia spp. (including specific assays for Borrelia afzelii, Borrelia garinii, Borrelia valaisiana), Anaplasma phagocytophilum, Babesia spp., Rickettsia spp., and Neoehrlichia mikurensis]. The probability of a nymph having fed as larva on either a vole, shrew or red squirrel was 0.34 (0.30 - 0.38; 95% confidence interval). Bacteria of the genus Borrelia were the most common pathogens detected, with host-specific probabilities of carrying Borrelia of 0.30 (0.18 - 0.44) for nymphs that had fed on voles, 0.23 (0.14 - 0.35) for nymphs that had fed on shrews, and 0.42 (0.28 - 0.58) for nymphs that had fed on red squirrels. Other microbes were rarely acquired from these hosts, apart from N. mikurensis from voles. This study highlights that shrews and red squirrels may equal voles as blood meal sources for I. ricinus larvae. Overall, variation in proportions of blood meals provided by these animals may be high across even proximate study areas. All studied host species appeared to be important sources for particularly Borrelia afzelii, and voles also for N. mikurensis.


Assuntos
Borrelia , Ixodes , Rickettsia , Animais , Humanos , Musaranhos , Finlândia , Arvicolinae , Borrelia/genética , Ixodes/microbiologia , Rickettsia/genética , Ninfa/microbiologia , Sciuridae
8.
Mol Ecol ; 32(23): 6449-6460, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36479967

RESUMO

Urbanization is affecting arthropod communities worldwide, for example by changing the availability of food resources. However, the strength and direction of a community's response is species-specific and depends on species' trophic level. Here, we investigated interacting species at different trophic levels in nests of cavity-nesting bees and wasps along two urbanization gradients in four German cities using trap nests. We analysed bee and wasp diversity and their trophic interaction partners by metabarcoding the DNA of bee pollen and preyed arthropods found in wasp nests. We found that the pollen richness increased with increasing distance from city centres and at sites characterized by a high percentage of impervious and developed surface, while the richness of pollinators was unaffected by urbanization. In contrast, species richness of wasps, but not their arthropod prey, was highest at sites with low levels of urbanization. However, the community structure of wasp prey changed with urbanization at both local and regional scales. Throughout the study area, the community of wasps consisted of specialists, while bee species were generalists. Our results suggest that Hymenoptera and their food resources are negatively affected by increasing urbanization. However, to understand distribution patterns of both, wasps and bees in urban settings other factors besides food availability should be considered.


Assuntos
Urbanização , Vespas , Animais , Abelhas/genética , Biodiversidade , Vespas/genética , Cidades , Especificidade da Espécie , Ecossistema
9.
Ecol Evol ; 12(12): e9538, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36518623

RESUMO

In Finland, the distribution area of the taiga tick, Ixodes persulcatus (Schulze, 1930), is nested within a broader area of distribution of a congeneric species, the sheep tick, Ixodes ricinus (Linnaeus, 1758) (Acari: Ixodidae). We assess whether distinct environmental adaptations or dispersal history provides a more parsimonious explanation for the differences in the distributions of the two common and medically important ixodids in Finland. We used an innovative spatially constrained randomization procedure to analyze whether crowdsourced occurrence data points of the two tick species had statistically different associations with any of the 28 environmental variables. Using points of presence in a region of species co-occurrence, we built Maxent models to examine whether environmental factors or dispersal history could explain the absence of I. persulcatus in a part of the range of I. ricinus in Finland. Five environmental variables-number of inhabitants, road length, elevation above sea level, proportion of barren bedrock and boulders, and proportion of unsorted glacial deposits-were significant at p ≤ .05, indicating greater between-species difference in original than in the randomized data. Of these variables, only the optimum value for unsorted glacial deposits was higher for I. persulcatus than for I. ricinus. Maxent models also predicted high relative habitat suitability (suitability >80%) for I. persulcatus south of its current, sharply bounded distribution range, suggesting that the species has not fulfilled its distribution potential in Finland. The two most common and medically relevant ixodids in Finland may colonize habitats with different environmental conditions. On the contrary, the recent establishment and ongoing dispersion of I. persulcatus in Fennoscandia rather than environmental conditions cause the southernmost distribution limit of the species in Finland.

10.
J Fungi (Basel) ; 8(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36354890

RESUMO

Colletotrichum species are among the most devastating plant pathogens in a wide range of hosts. Their accurate identification requires a polyphasic approach, including geographical, ecological, morphological, and genetic data. Solanaceous crops are of significant economic importance for Bulgarian agriculture. Colletotrichum-associated diseases pose a serious threat to the yield and quality of production but are still largely unexplored. The aim of this study was to identify and characterize 26 pathogenic Colletotrichum isolates that threaten solanaceous crops based on morphological, pathogenic, and molecular data. DNA barcodes enabled the discrimination of three main taxonomic groups: C. acutatum, C. gloeosporioides, and C. coccodes. Three different species of acutatum complex (C. nymphaeae, C. godetiae, and C. salicis) and C. cigarro of the gloeosporioides complex were associated with fruit anthracnose in peppers and tomatoes. The C. coccodes group was divided in two clades: C. nigrum, isolated predominantly from fruits, and C. coccodes, isolated mainly from roots. Only C. salicis and C. cigarro produced sexual morphs. The species C. godetiae, C. salicis, and C. cigarro have not previously been reported in Bulgaria. Our results enrich the knowledge of the biodiversity and specific features of Colletotrichum species, which are pathogenic to solanaceous hosts, and may serve as a scientific platform for efficient disease control and resistance breeding.

11.
PLoS One ; 17(7): e0268250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830374

RESUMO

To assess a species' impact on its environment-and the environment's impact upon a species-we need to pinpoint its links to surrounding taxa. The honeybee (Apis mellifera) provides a promising model system for such an exercise. While pollination is an important ecosystem service, recent studies suggest that honeybees can also provide disservices. Developing a comprehensive understanding of the full suite of services and disservices that honeybees provide is a key priority for such a ubiquitous species. In this perspective paper, we propose that the DNA contents of honey can be used to establish the honeybee's functional niche, as reflected by ecosystem services and disservices. Drawing upon previously published genomic data, we analysed the DNA found within 43 honey samples from Northern Europe. Based on metagenomic analysis, we find that the taxonomic composition of DNA is dominated by a low pathogenicity bee virus with 40.2% of the reads, followed by bacteria (16.7%), plants (9.4%) and only 1.1% from fungi. In terms of ecological roles of taxa associated with the bees or taxa in their environment, bee gut microbes dominate the honey DNA, with plants as the second most abundant group. A range of pathogens associated with plants, bees and other animals occur frequently, but with lower relative read abundance, across the samples. The associations found here reflect a versatile the honeybee's role in the North-European ecosystem. Feeding on nectar and pollen, the honeybee interacts with plants-in particular with cultivated crops. In doing so, the honeybee appears to disperse common pathogens of plants, pollinators and other animals, but also microbes potentially protective of these pathogens. Thus, honey-borne DNA helps us define the honeybee's functional niche, offering directions to expound the benefits and drawbacks of the associations to the honeybee itself and its interacting organisms.


Assuntos
Mel , Animais , Abelhas/genética , DNA , Ecossistema , Néctar de Plantas , Polinização
12.
Exp Appl Acarol ; 86(1): 145-156, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34787774

RESUMO

Ticks are globally renowned vectors for numerous zoonoses, and birds have been identified as important hosts for several species of hard ticks (Acari: Ixodidae) and tick-borne pathogens. Many European bird species overwinter in Africa and Western Asia, consequently migrating back to breeding grounds in Europe in the spring. During these spring migrations, birds may transport exotic tick species (and associated pathogens) to areas outside their typical distribution ranges. In Finland, very few studies have been conducted regarding ticks parasitizing migrating or local birds, and existing data are outdated, likely not reflecting the current situation. Consequently, in 2018, we asked volunteer bird ringers to collect ticks from migrating and local birds, to update current knowledge on ticks found parasitizing birds in Finland. In total 430 ticks were collected from 193 birds belonging to 32 species, caught for ringing between 2018 and 2020. Furthermore, four Ixodes uriae were collected from two roosting islets of sea birds in 2016 and 2020. Ticks collected on birds consisted of: Ixodes ricinus (n = 421), Ixodes arboricola (4), Ixodes lividus (2) and Hyalomma marginatum (3). Ixodes ricinus loads (nymphs and larvae) were highest on thrushes (Passeriformes: Turdidae) and European robins (Erithacus rubecula). The only clearly imported exotic tick species was H. marginatum. This study forms the second report of both I. uriae and I. arboricola from Finland, and possibly the northernmost observation of I. arboricola from Europe. The importation of exotic tick species by migrating birds seems a rare occurrence, as over 97% of all ticks collected from birds arriving in Finland during their spring migrations were I. ricinus, a species native to and abundant in Finland.


Assuntos
Doenças das Aves , Ixodes , Ixodidae , Passeriformes , Infestações por Carrapato , Animais , Doenças das Aves/epidemiologia , Finlândia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária
13.
Ecol Evol ; 11(12): 8295-8309, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188887

RESUMO

Trophic interactions may strongly depend on body size and environmental variation, but this prediction has been seldom tested in nature. Many spiders are generalist predators that use webs to intercept flying prey. The size and mesh of orb webs increases with spider size, allowing a more efficient predation on larger prey. We studied to this extent the orb-weaving spider Araneus diadematus inhabiting forest fragments differing in edge distance, tree diversity, and tree species. These environmental variables are known to correlate with insect composition, richness, and abundance. We anticipated these forest characteristics to be a principle driver of prey consumption. We additionally hypothesized them to impact spider size at maturity and expect shifts toward larger prey size distributions in larger individuals independently from the environmental context. We quantified spider diet by means of metabarcoding of nearly 1,000 A. diadematus from a total of 53 forest plots. This approach allowed a massive screening of consumption dynamics in nature, though at the cost of identifying the exact prey identity, as well as their abundance and putative intraspecific variation. Our study confirmed A. diadematus as a generalist predator, with more than 300 prey ZOTUs detected in total. At the individual level, we found large spiders to consume fewer different species, but adding larger species to their diet. Tree species composition affected both prey species richness and size in the spider's diet, although tree diversity per se had no influence on the consumed prey. Edges had an indirect effect on the spider diet as spiders closer to the forest edge were larger and therefore consumed larger prey. We conclude that both intraspecific size variation and tree species composition shape the consumed prey of this generalist predator.

14.
Ecology ; 102(7): e03376, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33937985

RESUMO

While top-down control plays an important role in shaping both natural and agricultural food webs, we lack insights into how top-down control effects vary across spatial scales. We used a multi-scale survey of top-down control of coffee pests and diseases by arboreal ants to examine if colony location creates a small-scale mosaic in top-down control around trees and if the strength of that control varies between sites at the landscape scale. We investigated pest and disease levels on coffee shrubs at different distances from shade trees with and without a Crematogaster spp. ant colony in 59 sites along a coffee management intensity gradient in southwestern Ethiopia. Within sites, ants significantly suppressed herbivory and coffee leaf rust at distances less than 10 m from nesting trees. Top-down control varied between sites, with stronger top-down control of free-feeding herbivory near ant colonies at sites with lower management intensity and stronger top-down control of a skeletonizer at sites with higher canopy cover. We conclude that the strength of top-down control by ants is highly heterogeneous across spatial scales, as a consequence of the biology of the predator at the small scale and herbivore density or changes in herbivore-ant interactions at the landscape scale.


Assuntos
Café , Florestas , Herbivoria , Controle de Pragas , Árvores
16.
Sci Rep ; 11(1): 4798, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637887

RESUMO

The regional origin of a food product commonly affects its value. To this, DNA-based identification of tissue remains could offer fine resolution. For honey, this would allow the usage of not only pollen but all plant tissue, and also that of microbes in the product, for discerning the origin. Here we examined how plant, bacterial and fungal taxa identified by DNA metabarcoding and metagenomics differentiate between honey samples from three neighbouring countries. To establish how the taxonomic contents of honey reflect the country of origin, we used joint species distribution modelling. At the lowest taxonomic level by metabarcoding, with operational taxonomic units, the country of origin explained the majority of variation in the data (70-79%), with plant and fungal gene regions providing the clearest distinction between countries. At the taxonomic level of genera, plants provided the most separation between countries with both metabarcoding and metagenomics. The DNA-based methods distinguish the countries more than the morphological pollen identification and the removal of pollen has only a minor effect on taxonomic recovery by DNA. As we find good resolution among honeys from regions with similar biota, DNA-based methods hold great promise for resolving honey origins among more different regions.


Assuntos
Mel/análise , Metagenômica , Bactérias/genética , DNA/genética , Código de Barras de DNA Taxonômico , Fungos/genética , Plantas/genética
17.
J Anim Ecol ; 90(4): 859-874, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368254

RESUMO

In a warming world, changes in climate may result in species-level responses as well as changes in community structure through knock-on effects on ecological interactions such as predation and herbivory. Yet, the links between these responses at different levels are still inadequately understood. Assessing how microclimatic conditions affect each of them at local scales provides information essential for understanding the consequences of macroclimatic changes projected in the future. Focusing on the rapidly changing High Arctic, we examine how a community based on a common resource species (avens, Dryas spp.), a specialist insect herbivore (Sympistis zetterstedtii) and natural enemies of lepidopteran herbivores (parasitoids) varies along a multidimensional microclimatic gradient. We ask (a) how parasitoid community composition varies with local abiotic conditions, (b) how the community-level response of parasitoids is linked to species-specific traits (koino- or idiobiont life cycle strategy and phenology) and (c) whether the effects of varying abiotic conditions extend to interaction outcomes (parasitism rates on the focal herbivore and realized herbivory rates). We recorded the local communities of parasitoids, herbivory rates on Dryas flowers and parasitism rates in Sympistis larvae at 20 sites along a mountain slope. For linking community-level responses to microclimatic conditions with parasitoid traits, we used joint species distribution modelling. We then assessed whether the same abiotic variables also affect parasitism and herbivory rates, by applying generalized linear and additive mixed models. We find that parasitism strategy and phenology explain local variation in parasitoid community structure. Parasitoids with a koinobiont strategy preferred high-elevation sites with higher summer temperatures or sites with earlier snowmelt and lower humidity. Species of earlier phenology occurred with higher incidence at sites with cooler summer temperatures or later snowmelt. Microclimatic effects also extend to parasitism and herbivory, with an increase in the parasitism rates of the main herbivore S. zetterstedtii with higher temperature and lower humidity, and a matching increase in herbivory rates. Our results show that microclimatic variation is a strong driver of local community structure, species interactions and interaction outcomes in Arctic ecosystems. In view of ongoing climate change, these results predict that macroclimatic changes will profoundly affect arctic communities.


Assuntos
Herbivoria , Comportamento Predatório , Animais , Regiões Árticas , Ecossistema , Microclima
18.
Ecol Evol ; 11(24): 18651-18661, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003699

RESUMO

One mechanism for morphologically similar and sympatric species to avoid competition and facilitate coexistence is to feed on different prey items within different microhabitats. In the current study, we investigated and compared the diet of the two most common and similar-sized bat species in Japan-Murina ussuriensis (Ognev, 1913) and Myotis ikonnikovi (Ognev, 1912)-to gain more knowledge about the degree of overlap in their diet and their foraging behavior. We found that both bat species consumed prey from the orders of Lepidoptera and Diptera most frequently, while the proportion of Dipterans was higher in the diet of M. ikonnikovi. Furthermore, we found a higher prey diversity in the diet of M. ikonnikovi compared to that of M. ussuriensis that might indicate that the former is a more generalist predator than the latter. In contrast, the diet of M. ussuriensis contained many Lepidopteran families. The higher probability of prey items likely captured via gleaning to occur in the diet of M. ussuriensis in contrast to M. ikonnikovi indicates that M. ussuriensis might switch between aerial-hawking and gleaning modes of foraging behavior. We encourage further studies across various types of habitats and seasons to investigate the flexibility of the diet composition and foraging behavior of these two bat species.

19.
PeerJ ; 9: e12634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003931

RESUMO

Sexes often differ in foraging and diet, which is associated with sex differences in size, trophic morphology, use of habitats, and/or life history tactics. Herein, strikingly similar diets were found for adult sexes of a dragonfly (Leucorrhinia intacta), based on comparing 141 dietary taxa identified from the metabarcoding of mitochondrial DNA archived in feces. Arthropods in > 5% of samples included five species of dipterans, two hemipterans, two spider species and one parasitic mite. The mite was not traditional prey as its presence was likely due to DNA contamination of samples arising through parasitism or possibly via accidental consumption during grooming, and therefore the mite was excluded from diet characterizations. Common prey species were found with statistically indistinguishable frequencies in male and female diets, with one exception of an aphid more often found in male diets, although this pattern was not robust to corrections for multiple statistical tests. While rare prey species were often found in diets of only one sex, instances of this were more frequent in the more oft-sampled females, suggesting sampling artefact. Sexes did not differ in the mean prey species richness in their diets. Overall, sexes showed statistically indistinguishable diets both on a prey species-by-species basis and in terms of multivariate characterizations of diet composition, derived from presence-absence data of prey species analyzed via PERMANOVA and accumulation curves. Males and females may have similar diets by being both opportunistic and generalist predators of arthropods, using the same foraging habitats and having similar sizes and flight agilities. Notably, similarities in diet between sexes occur alongside large interindividual differences in diet, within sexes. Researchers intending on explaining adaptive sex differences in diet should consider characteristics of species whose sexes show similar diets.

20.
Exp Appl Acarol ; 82(4): 571-585, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33128644

RESUMO

Hard ticks (Acari: Ixodidae) act as important vectors of zoonotic pathogens. For instance, Borrelia burgdorferi s.l. spirochetes pose a severe health risk as aetiological agents of Lyme borreliosis. Commonly, to study the abundance of questing (host-seeking) ticks, a 1 m2 piece of cloth is dragged over vegetation for a determined distance. Here, we designed a tick-sampling study to estimate the sampling efficiency of this standard method. We established 10 m dragging transects in a hemiboreal mixed forest patch in SW Finland for a 5-day monitoring period. Five of the transects were cloth-dragged 3× a day, whereas another five transects were dragged 6× a day in a manner that after each morning, midday and afternoon dragging, a second dragging was conducted on the same transect immediately. Captured Ixodes ricinus ticks were subsequently analysed for tick-borne pathogens. The initial population size of nymphal ticks on a transect was approximated by the accumulated nymph catch from the dragging sessions. The sampling efficiency of the cloth dragging was low, as a single dragging in a previously untouched vegetation strip always caught less than 12% (mean 6%) of the estimated population of active nymphs that were assumed to be questing during the study. Clear results were not found for daily activity rhythm, as ticks were caught in all daily dragging sessions. Approximately every third nymph and every second adult carried a pathogen, but nothing indicated that the occurrence of a pathogen affected the likelihood of the tick being caught by cloth dragging. Our results suggest that only a minority of active ticks can be caught by a single cloth dragging. The abundance estimates in many tick investigations might thus be downward biased.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Finlândia , Ninfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...